Pesticide Contamination of Milkweeds Across the Agricultural, Urban, and Open Spaces of Low-Elevation Northern California

Monarch butterflies (Danaus plexippus) are in decline in the western United States and are encountering a range of anthropogenic stressors. Pesticides are among the factors that likely contribute to this decline, although the concentrations of these chemicals in non-crop plants are not well documented, especially in complex landscapes with a diversity of crop types and land uses. In this study, we collected 227 milkweed (Asclepias spp.) leaf samples from 19 sites representing different land use types across the Central Valley of California. We also sampled plants purchased from two stores that sell plants to home gardeners. We found 64 pesticides (25 insecticides, 27 fungicides, and 11 herbicides, as well as 1 adjuvant) out of a possible 262 in our screen. Pesticides were detected in every sample, even at sites with little or no pesticide use based on information from landowners. On average, approximately 9 compounds were detected per plant across all sites, with a range of 1–25 compounds in any one sample. For the vast majority of pesticides detected, we do not know the biological effects on monarch caterpillars that consume these plants; however, we did detect a few compounds for which effects on monarchs have been experimentally investigated. Chlorantraniliprole in particular was identified in 91% of our samples and found to exceed a tested LD50 for monarchs in 58 out of 227 samples. Our primary finding is the ubiquity of pesticides in milkweeds in an early summer window of time that monarch larvae are likely to be present in the area. Thus, these results are consistent with the hypothesis that pesticide exposure could be a contributing factor to monarch declines in the western United States. This highlights the need for a greater understanding of both the lethal and sublethal effects of these compounds (individually, additively, and synergistically) and suggests the urgent need for strategies that reduce pesticide use and movement on the landscape.

Halsch, C. A., A. Code, S. M. Hoyle, J. A. Fordyce, N. Baert, and M. L. Forister
Frontiers in Ecology and Evolution
Year published: